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Crescent singularities in crumpled sheets
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We examine the crescent singularity of a developable cone in a setting similar to that studied bgt@érda
[Nature(London 401, 46 (1999]. Stretching is localized in a core region near the pushing tip and bending
dominates the outer region. Two types of stresses in the outer region are identified and shown to scale
differently with the distance to the tip. Energies of theone are estimated and the conditions for the scaling
of core region sizéR. are discussed. Tests of the pushing force equation and direct geometrical measurements
provide numerical evidence that core size scaleB.ash'/°R%3, whereh is the thickness of sheet aiRiis the
supporting container radius, in agreement with the proposition of Cetrdd. We give arguments that this
observed scaling law should not represent the asymptotic behavior. Other properties are also studied and tested
numerically, consistent with our analysis.
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I. INTRODUCTION bending and stretching energies of the whole cone. As a re-
sult of the stress focusing in the core region, crescentlike
As we crumple a piece of paper in our hands, two types othapes come out where bending stresses are big, as shown in
singular structures appear in the crumpled paper: foldingrig. 2. In addition, as we will see later, finite thickness also
ridges and pointlike vertices. Energies are condensed into @auses a small amount of strains in the outer region.
network of such singularities. The properties of ridges have One problem of great interest is concerned with the size
been studied thoroughly. Scaling laws governing the energgf the core region, characterized by the radius of curvature of
and size of the ridge have been obtained analytically anthe crescents. We want to know whether there is scaling be-
tested numerically{1-4]. Pointlike singularities are also havior of the core size and to determine any scaling expo-
studied extensively5-12]; however, current understanding nents. Intuitively, we expect that this siR should have a
of their properties is not as complete as that of ridges. dependence on thicknelsssinceR, goes to zero als goes to
In this paper, we consider a single conical vertex studiedzero. Cerdaet al.[5] propose thaR. scales ask,~h'/°R?3,
by Cerdaet al.[5,6]. One experimental realization is to push This says that, besidds the supporting container radis
the center of a circular elastic sheet of radRysaxially into  also determine&.. This is surprising because stretching en-
a cylindrical container of radiu®, as illustrated in Fig. 1. ergies are supposed to be localized in the core region, so the
This is the simplest volume-restricting deformation of thecore should not be able to know about the length of outside
sheet and causes the center of the sheet to move into tl®ntainer radius. In this work we explore this problem as
container by a distance. It is useful to express the deflec- well as other properties of @ cone. In Sec. Il, we describe
tion of the sheet by=d/R. Due to the constraint of un-
stretchability, the sheet deforms into a nonaxisymmetric
conical surface which is only in partial contact with the edge
of the container. In the limit that the thicknels®f the sheet
goes to zero, since the bending modulush®) vanishes
faster than the stretching modulsh), there would be pure
bending over the sheet and Gaussian curvature would be zero
everywhere. Mathematically, such a conical surface is called
a perfectly developable coné3] (d cone. In this limit,
some models about the shape of theone have been pro-
posed[6-8,13. These models only give outer-region solu-
tions ofd-cone shape, in the sense that they do not consider
the stretching energy that is inevitable on a real sheet with
finite thickness. For a real sheet, it must stretch near the tip,
because otherwise, the curvature at the tip would be diver-
gent, since curvature goes asr 1wherer is the distance to FIG. 1. Ad cone appears when we push the center of an origi-
the tip, thus causing divergent energy. Therefore, it is theyally flat sheet against the edge of a cylindrical container from
finite thickness that causes the sheet to stretch greatly in glow with forceF. This is a typical simulated-cone shape, with
small region near the tip. This small region is called the coreside length I=60a, container radiusR=38a, displacementd
region. It is where energetically expensive stretching is l0=0.15R, and thicknes$1=0.102, wherea is the lattice spacing.
calized and its size is governed by the competition of theTwo sets of coordinate systems are shown.
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that which minimizes this energy. Two forms of energy must
be considered: bending ener@yand stretching energ.

The bending energy density is proportional to the square of
the total curvatureC(r) [14]. This C(r), defined as the trace

of the curvature tensor, is sometimes called the mean curva-
ture[15]. The constant of proportionality is called the bend-
ing modulusk. Thus,

B:%deAO(r)z, (1)

where [dA denotes the integral over the surface. In general
there is a second form of bending energy, proportional to the
average Gaussian curvature. We show later in this section
that this Gaussian curvature energy is unimportant for the

FIG. 2. Sketch of the core region oftacone. The crescent area pre_?ﬁnt tsysttehm. d ity i " lto th
is shown in white. Directors are shown as black lines. Many direc- € Stretching energy density IS proportional to the square

tors converge toward the two tips of the crescent. The dashed circl‘é‘c the strain tensoy. For an isotropic material, there are two

tangent to the crescent at its center defines the raglius forms of stretching energy with constants of proportionality
YhandY;h [16]:

the energies and forces that give rise to the crescent singu- 1
larity. We first study the elastic properties of a truncated S= P f dALYNTry)?+Y;h(Dety)], 2
cone formed by cutting a cap region at the center of a regular

d cone and then investigate the energetic variations as WghereY is Young’s modulus and; is a convenient combi-
join the cap region into the truncatellcone. From them, we pation of Y and dimensionless Poisson’s ratio They are
discuss the conditions for the existence of scaling behaviofe|ated to bending modulus througts Y F/12(1-12).

of R.. Details of numerical models of simulating an elastic  The actual strain and curvature fields are those which
sheet and producing desired shapes are presented in Sec. l{inimize theB+S. The variational minimization amounts to
After numerical results that agree with the predictedone g statement that the normal forces on each element must

properties are shown, we use two different methods to loolggiance. This statement is known as the “force von Karman
for scaling exponents oR.. Finally, the limitations of and  equation”

implications from our findings and future work are discussed
|n SeC IV 00((?,3|\/| ap = O-OZ,BCG'E + P, (3)

where M, are torques per unit lengthr,; are in-plane
Il. THEORIES stresses, an® is external force per unit area of the sheet.
When we push a circular sheet of radils into a con-

We begin by stating the connection between the deformatainer to form ad cone, strain and curvature distortions are
tion of the sheet and its elastic energy. In a tHigone the created and elastic energy is stored. This energy arises from
dominant energy is due to the bending distortion in outerseveral effects. It is convenient to discuss it by creating the
region far from the crescent. We discuss the form of thisfinal surface in two stages. In the first stage, we assume a
energy and the stresses associated with it. Next we outlinealue for R, and cut a circular hole of that radius in the
the energetic effects of the crescent region. Finally, we focusenter of the sheet. We then force this perforated sheet into
on how each of these energies is influenced by a change the container by exerting tension on the inner edge of the
the crescent radiuB.. We sketch how scaling properties of hole. In the unstretchable limit<R, this shape becomes a
the energy produce scaling behavior in the sheet. truncatedd cone, which serves as the outer region of a regu-

We first specify two coordinate systems. We defimgas lar d cone. In this region, the curvature at every point van-
the horizontal plane of the supporting cylindrical container’sishes in the radial direction. The total curvatu@ehas the
edge, with the origin on the axis of cylinder andxis point-  form C=¢(6)/r. Its bending energg, is thus given by
ing upward(see Fig. 1 We then define ax’-y’ plane as .
parallel to thex-y plane but with origin at the tip of the sheet 1 P 2 2
and z' axis pointing opposite t@ axis. Thex'-y’ plane is Bo = EK_LC rdr/r jd% (6)  k IN(RIRy). (4)
displaced from the-y plane by a distancd. Next we define
(p,0) as the polar coordinates in txé-y’ plane. In the cy- In the limit h<R.< R, this By dominates the energy, as we
lindrical coordinatesp6z’'}, the d cone is described by’ justify below. Then the functio takes the form that mini-
=py(6), in the limit that thicknessi— 0. We shall denote mizes B, subject to the constraints on tliecone. In this
this limiting surface as thasymptotic d cone geometry, the force von Karméan equation simplifies greatly,

In equilibrium, the sheet assumes a conformation tha@nd the form ofp(6) as well as the associated stresses can be
minimizes the elastic energy. Thus, the actual core radius ifound explicitly [6,12].
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We first determine the transverse stresg using Eq.(3). We now examine the profile of the external force along
The nonzero components of torque tensbfollow from the  the container edge. Here the external normal force pre$sure
constitutive law implicit in the energy equatioh$4]: M,, of Eq. (3) is nonvanishing. This normal force causes a small
=kvCyy=kvp(0)/r andM 4= kCyy=rp(0)/r. The force von transverse deflection of the sheet and hence induces both
Karman equation then reduces @M, + @M 4/r?=04,Cyy  Curvature and strain near the edge. Noticing that the curva-
+P, from which we obtain ture induced is in the radial direction and has opposite sign

with C,,, we expect the mean curvature to be reduced near

(0) Pr the edge. Due to the translational symmetry along the region
Tpp= 52<zv+ —) -—, (5) of the surface in contact with the cylindrical container, the
r &0/ P(6) normal force pressure is found to be independent of the azi-

muthal angled. However, besides thig-independent term,
where the overdots denotederivatives. In the same region Cerda and Mahadevdi2] show that as-function term of#
where onlyC, is nonzero, there is no pressure from externalemerges in the normal force pressure expression in order to
force acting on the sheet—i.d2=0. Therefore, according to make the torque balance, and this singularity happens at the
Eq. (5), the stressr,, goes asc/r2 These stresses arise from take-off angular positions, where the sheet begins to bend
the requirement that the normal force due to changingaway from the container. Since stresses and curvatures
torques be balanced by the normal force due to in-plane tershould avoid singular behavior for the sake of energy, ac-

sion of the sheet. V\{% call them type-I stresses and denotgyrding to Eq(5), there must exist a-function term ing(6)
them by the symboé. to cancel that from normal force pressielntegrating over

e %nn ttfljuzt(:rTc?lgsr]:sn?HeV\;ere(;ogg\?virtalEnhteh;Oi:wcneerbﬁilgir;;e d of ¥, we conclude thatp(6) should have a jump at the take-off
9 positions. This result is consistent with the geometrical re-

outer radiusr, wherer can take values betwed®, andR. ; o ; :
The tension exerted on the inner edge of this region iquwement. More quantitatively, following Reff12], we find
9 9 Yhat the ratio of the normal force contributed by the

equivalent to the central pushing force of a regulazone. Y . . .
This force must be balanced by the force due to radial in-5 function term to that contributed by thé-independent

plane stress,, on the outer perimeter of the region. L@be term is tang./[2(—6;)], whereé; is the half aperture angle

s of the noncontact region. For small deflections, takifig
:Eg ant%?izb:rt\tgtlaen girr]?:(ilal 'I[g::og;(%()ane@;or Or:cg\ijf nesﬁ;d ~1.21 rad[6], we obtain the value of this ratio, 0.69. We

Ty . . will numerically verify this ratio later.
=y{0)/\1+y?(0). The balance of vertical forces yields Having disc)lljsse;ystresses and forces, we now consider in
detail the bending energi,. The bending energy comes
from both the total curvature and Gaussian curvature. Since
the truncatedd cone has no Gaussian curvature, we only
need to take account of the total curvature contribution. The
which holds for every value af from R, to R. It is easy to reduced curva_turerb(a) is reIaFed_ to the _reduce.d height
see that type-| stresses alone cannot satisfy this equatioff{6)=2'/p defined in the beginning of this sectiog(6)
since type-l stresses go asrd,/they would give a 1 pref- = y(6) +y(6) — (0) y2(0)/[1+yA(6)]. For small to moderate
actor on the left side of equation, while the right side of theyeformations of the sheete<0.4), C~(y+ z"p)/rz €lr.
equation is independent of Therefore, the integral from y.q,9hout the paper we shall focus on this moderate range
type-| stresses must vanish and there must exist some addj; . The bending energg, has the form
tional stresses in the outer region that scale astd satisfy
Eq. (6). We call these stresses type-ll stresses and denote P
them by o@. They persist up to the supporting container Bo=§ f C%dA=~ Gike IN(RYR), (8)
edge, where normal force from the container counteracts the

external pushing force. We can .Wr'lte@r:F.e(H), where  \yhere G, is a geometrical factor. Comparing this with

e(0) is a function only off and satisfiege(0)sind0=1. It from Eq.(7), we see that bending dominates the outer region.

is obvious thai(6) is of order unity. Although Gaussian curvature is zero everywhere in a

To estimate the magnitude of type-I| stresses, we noticguncatedd cone, it is certainly not the case for a reguiar
that F=JE/dd=(JE/ Je)/R=~ kIR. Thuso'? =F/r=«/(rR).  cone. The Gaussian curvature contribution to the bending

The type-II stresses are comparable with type-I stresses onbhergy isBg=(xg/2) fKdA, where kg is the Gaussian cur-

near the container edge since the ratid’/oc®~r/R for  vature coefficientK is the Gaussian curvature, aAdis the

R.<r<R. Itis noted that they are both due to nonzero thick-area. According to the Gauss-Bonnet theorem, the integral of

nesses. Since in-plane stress tensors are related to strain t€faussian curvature over a regibh of a surface is related

sors through[16] o,5=[YN (1-19)](y.s+ Ve €s.7,,), We  [13] to the integral of the geodesic curvatukg over the
have straingy=~ o/ (Yh). The stretching energy of a truncated boundary of that region throughyKdA=27— [ Kyds.

d cone is then ChoosingM to be the whole sheet without perforation, we
get Bg=(kg/2)(27—[k4ds). If the sheet were a perfectly
developable conical surface, the geodesic curvature at the

S= Kh_zf [(a+0@)(YNrdrdo~ kh?RE.  (7)  perimeter would be the same as that of a regular cone of the

fcr,rrsin,edazlz, (6)
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e=d/R

(b)

asymptotic lines

FIG. 3. (a) Sketch of a cross section of tliecone. The solid
hypotenuse is for thd cone wherh— 0 and has slope; the dashed
hypotenuse is for a real she#t+ 0) and has slope’. (b) Sketch of
fitting a hyperbola to findR; from geometry.

same sizexy=1/R,, whereR,; is the perimeter-to-tip dis-
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(8) with e replaced bye': By~G;xe(1+R:/R)IN(Ry/Ry).
This increases th&, energy by a factol+R./R). This
addition to the energy favors sméadl.

Besides these variations, there are other forms of added
energy. We denote them aE. It consists of stretching en-
ergy AE, added to the original region plus the enefgyof
the cap or core region. The added enefdy is expected to
be much smaller than the dominant enei§y discussed
above. NeverthelesdE is all important in determining the
core radiusk..

Further distortions increase the energy of the outer region.
The crescent singularity increases the curvature near the tips
of the crescent. As shown in Fig. 2, the generators, initially
distributed smoothly around the inner hole, are now concen-
trated at the tips of the crescent, increasing the curvature
there. The generators splay outward from these tips. Obser-
vation suggests that a finite fraction of the generators are
pushed to the tips. These generators appear to splay outward
less rapidly when the sizR is increased. These observations
suggest thata) the crescent increases the exterior curvature
energy andb) this energy decreases as the dize » for a
givenR.. This energy penalty favors smat./R. We do not

tance. However, due to stretching of the real sheet and pushave a more specific estimate for this energy at present.
ing of the container edge, the shape is not perfectly develop- We now consider the enerdy, of the cap or core region
able, so there are variations in the perimeter-to-tip distanceisself. In order to bridge the truncated cone, the average cur-

along the boundary which make deviate from 1R,. Since

vature C must be of ordere/R.. If the curvatures are uni-

stretching is small compared with bending and the sheet iform, the associated bending energy is of oragrdAC
nearly developable over most of the surface, this deviation is= ke>. However, such uniform curvatures are not optimal.
small compared with 1R,, and it should depend on the The smoothly curved cap region has typical Gaussian curva-

thicknessh. We suppose that, is a regular function oh and
may be expressed ag~(1/Ry)[1+(h/R)0(6,¢)], where
is a dimensionless function af and e. Substituting this
into the equation for the bending energy, we obt&g
=-(kg/2)(h/Ry) JO(6,€)dd. Compared with Eq(8), this
energy is only a small fractiofh/R;)/In(R,/R;) of the bend-
ing energy contributed by the total curvature.

tures of ordere?/R?, consisting of a negative part in the
buckled region and a comparable positive part elsewhere.
The presence of Gaussian curvature induces strain of order
€ and a stretching energy of ordeh 2¢*R% The system
may alleviate this large stress energy by concentrating the
curvature, as in the simple stretching rid@g The observed
crescent singularity is presumably the result of this concen-

The truncatedd cone discussed above has no crescentrated curvature. The length of this crescent is of oflgiits
singularity. This singularity arises from the further con- width w is evidently that which minimizeg,. If w is a fixed
straints of filling in the hole in the truncated cone. The flatfraction of R, the above estimates show tf&tgrows asR?.
disk of radiusR, that was removed must be distorted in orderTo improve this energyw/R; must go to zero aR; grows.
to join onto the truncated cone. This distorted cap exertdhe total curvature is then of order W/ and the bending

forces on the truncated cone and distorts it in turn. All of
these distortions add elastic energy to the en&8gyS, of

energy of the core goes aavR./w?~R./w. This energy
must grow indefinitely afik.— «. Evidently, the core energy

the initial truncatedd cone. One obvious addition is the favors smallR..

bending energyBg due to Gaussian curvature discussed With these energies in mind, we now investigate Hew
above. Another simple consequence of adding the core rds determined. It is clear thd, is controlled by the compe-
gion is to alter the slope of the outer region generator feom tition of energies. The total energy B=S+B|+Bg+AE.

to a higher values’ as shown in Fig. @). To relatee’ to e,

Our purpose is to find an optim&. that minimizes the total

we imagine a cross section of thecone extending from the energy. First, taking the derivative & with respect toR,

container edge to the tip and back down to the ddge Fig.

we havedB;/ IR;=Gike{~1/R;+[In(R,/R,) - 1]/R}. In the

3(a)]. In the truncatedl cone, the generators have the sameregime of interestR is comparable wittR,, andR; <R, so
slope € as the straight line from the container edge to thethe first term dominates the second termBg/dJR,

vertex, as shown by the solid lines in FigaB Now, for the

~ -G, k€I R;. This implies thaB, favors largeR.. Next, we

real sheet, the cap is curved, with a curvature radius of ordemotice that sinc&Bg/ IR, anddS,/ JR; are much smaller than

R;, but still, its uppermost point remains at height This

dBy! IR, in this regime, the competition happens mainly be-

rounding at the top necessarily increases the slope of thgveen the outer bending enerBy and the added energ\E.
outer cone generator, as illustrated by the dashed lines in thEhough we know little about the form of the added energy

same figure. When deformation is smadl,~d/(R-R./2)

AE, the above observations suggest ttatit favors small

~ ¢1+R./(2R)]. The altered bending energy is given by Eq. R;, (b) it decreases aR increases, anft) it involves stretch-
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ing, and thus increases with decreasing thickied® illus-  above. Likewise, it takes no account of the strong difference
trate the possible effect of this energy, we posit thatis  between the two principal curvatures in the crescent.

homogeneous iR, R, andh: Our analysis of the energy given above allows us to infer
B st the scaling ofR, based on measurements of the central push-
AE = kg(€RRh™", ©) ing force F. The inference is valid as long as the dominant

where g(e) is an unknown function of ands andt are  €nergy is the3, energy above. Ehe energy balance equation
unknown positive exponents. Thepower law is determined  (10) allows us to writtAE=G,«e*, whereG, is a numerical
from s andt by dimensional consistency. The energy mini- constant. Thus,

ir::;ﬁggn with respect to the variational paramefgrthen E~ leezln(Rp/Rc) + Goké?. (12)
The pushing force follows fronf=dJE/dd=(JE/de)/R. To
0= RC(?—E = - Gyké + SAE. (10) explore the scaling oRC,. we write R, as Rc:hPRngA(e),

IR; wherep, g, and\ are scaling exponents to be determined and

A(e) is a function only ofe. Dimensional consistency re-
quires thatp+g+\=1. Previous work5,6] did not consider
R. ~ R/sh™s, (11) the possibility thatR; has a dependence dR, Here we
address it by introducing. From Eq.(12) and the scaling

Thus the assumption of E¢9) implies thatR; should in-  expression oR,, the pushing force is calculated to be
crease as a power & SinceR; cannot excee®, the power
2G; ke

must be smaller than unity, so thamust be smaller thaa F

Though this assumed form f&E gives a pleasing result, R
we warn that it cannot be correct in the limit of larBéh. If (13)
it were correct, it would imply thaR./h goes to infinity with

R/h. This implies that the core ener@ must go to infinity  \yhere f(e)=—In A(e)+G,/G,-€A(e)/2A(e) is a function

relative toxe’, as shown above. The increaseBfoccurs gy of e We will use this equation to test the scaling rela-
irrespective ofR. ThusE; must grow to dominate the total {ions in the numerical section, which follows below.

energy. Such a largg; is not compatible with a minimum of
total energy. It must be balanced by some other energy fa-
voring largeR.. No such energy is apparent. ThRgcannot lll. NUMERICS AND FINDINGS
grow indefinitely. Conversely, any observed power-law
growth of R, must cease for sufficiently large/h. In the ) ] ) )
numerical section, we will give an empirical discussion of \We model an elastic sheet by a triangular lattice of springs
the range oR/h in which the scaling oR, holds. of unstretched length and spring constaritafter Seung and
These conclusions contrast with the scaling argument proNelson[15]. Bending rigidity is introduced by assigning an
posed in the initial studies of the cone[5,12]. Thus it is  energy ofJ(1-;-N,) to every pair of adjacent triangles with
important to revisit this scaling argument and show how thehormalsi, andf,. When strains are small compared to unity
contradiction with our result arises. The authors attribute th@nd radii of curvature are large compared to the lattice spac-
scaling to an energy balance between bending and stretchin@d &, this model is equivalent to an elastic sheet of thickness
in the core region. To estimate the stretching energy, thefi=ay8J/k made of an isotropic, homogeneous material with
consider a director traversing the sheet from one edgéyending modulusc=Jv3/2, Young's modulusy=2ka/hy3,
through the core and on to the opposite edge, such as ti@nd Poisson’s ratie=1/3. Thelattice spacing is set to 1.
dashed line in Fig. @). They note that increaseR, in-  The shape of the sheet in our simulation is a regular hexagon
creases the length of this chofeblative to the solid lineby  Of side lengthR;. The typical value oR; is 60a.
a fraction of order(R./R)2. If this strain is presumed uni-  To obtain a singled-cone shape, we need to simulate the
form, the associated stretching energy in the core is of ordegonstraining container edge and pushing force. As shown in
xh™2R4(R./R)*. They balance this energy against the bending™id. 1, the edge lies in the-y plane and is described by the
energy in the core, presumed to be of ordet. This balance ~eduationx®+y?=R% Pushing in the center of the sheet is
yields R~ R¥3n/3, accomplished by introducing a repulsive potential of the
This argument seems questionable, since it ignores enetofM Uroree(z1) =~F2z;, Wherez; is the z coordinate of the
gies much larger than the ones it includes. Its assumption d@ttice point in the center ané& is the magnitude of the
uniform strain leads to a stretching energy of uniform densityPushing force. This force is applied in the positiwelirec-
outside as well as within the core. The argument include$ion. The constraining edge is implemented by a potential of
that part of this energy lying within the core while ignoring the form Uggge= SCoH(2) I{{(VX+y?=R)2+ 214+ €8}, where
the much larger part outside the core. If one tries to repair thé, C, are constants and the summation is over all lattice
estimate by supposing the excess length resides only in thgoints with coordinateéx;,y;,z). H(2) is the unit step func-
core, then the strain becomes independenRa@ind theR,  tion, which makes certain that this potential only acts on the
must be independent &. In addition the argument ignores lattice points that have already moved into the container
the large stretching energy in the core arising from the nectthose withz >0). The force associated with it decays rap-
essary Gaussian curvature within the core itself, as discussédly once the lattice points go away from the edge. The con-

Using the assumed power-law form AE, we infer

[-pInh-qgInR+(1-MInRy+f(e)],

A. Numerical model
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| I(a) o r=50

18 + 1=40

FIG. 4. (a) Azimuthal profile of normalized
total curvature on a cone at three fixed dis-
tances from the tip. Curvature is positive for the
concave region, negative for the convex region.
Curvature is normalized by &/ wherer is the
fixed distance from the tip. This plot is for the
d-cone shape shown in Fig. 1 at distances 30
(circle), 40a (plus), and 5@ (squaré from the tip.
The container touches thé-cone surface at
=R\1+€*~38.4a. (b) Normalized curvature pro-
files for four different values ot at fixed thick-
nessh=0.102. Curvature is normalized by/r.
The profile ate— 0 is obtained by extrapolating
from profiles ate=0.10, 0.15, and 0.20. The solid
line is the exact solution as both—0 and e
—016,12].

0 5
1 1 1 1 1

0 0s 1 15
8 (rad)

jugate gradient algorithril7] is used to minimize the total where the sheet touches the supporting container. The three
elastic and potential energies of the system as a function afurves mostly collapse into one single curve. This roughly
the coordinates of all lattice points. Figure 1 shows one sucherifies that the curvature goes as 1However, nea=0,
minimized configuration of the lattice grid. The simulated the normalized curvature becomes systematically smaller for
sheet is indeed only in partial contact with the containersmallerr. We attribute this departure to the influence of the
edge. In the rest of this section, we shall first compare ouptretched crescent region.

results to thed-cone predictions of previous work. The good ~ The shapes of the curves are in qualitative agreement with
agreement indicates that our numerical realization is reliableQur analysis below. The surface is in contact with the con-

Next we shall investigate the scaling behaviorRyf tainer for anglesd larger than some, in magnitude. For
|6| > 6., the normalized curvature at allshown is constant
B. Curvature profile and its value is that of a simple cone of the sam@s |6

. , , . becomes less than the “take-off” anglg the surface curves
We first test our simulation by measuring the curvaturéinyardly away from the container and the total curvature
profile of the sheet and comparing it to the prediction undefegins to increase in negative direction. The crescent singu-

certain limiting situations. We determine the curvatures apiayity is most likely to live near the region where total cur-
proximately from each triangle in the sheet. For this meay gt re reaches its negative maximum. J# decreases fur-

surement, we take the curvature tensor to be constant acrogssr the curvature goes to zero, changes signs, and reaches a
each triangle. We calculate it using the relative heights of thgaptrg) positive maximum a®=0, which corresponds to
six vertices of the three triangles that share sides with th§here the sheet is maximally deflected.

gi'ven triangle18]. Thg Six relativg heights; normal to the As thicknessh and deformatiore go to zero, Cerda and
triangle surface are fit to a function of the form Mahadevan obtained the exact solution of curvature profile
W; = by + byl + by, + byU? + betiv; + bgv?, =1, ...,6, [6,12]. Although it is impossible for us to get the— 0 pro-

file, we want to compare our data with their prediction in the
(14 jimit that e=0. To do so, recall that the total curvature, as

where {u;,v;,w;} are coordinates of the vertices in a local Mentioned in Sec. | is related to the shape through
coordinate system that has theaxis perpendicular to the ={¥(6)+¢(0)— ¥ 0)y*(6)/[1+yA(H)]}/r. Since y(0) <€, we
surface of the given triangle. This choice of local coordinatehave Cr/e=ag+a,e+a,e*+0(€%), where a,, a;, and a,
system ensures thbs andb; are negligible so that curvature could depend ord. Hence, from this equation, we can ex-
tensors can be determined only from the coefficients of quatrapolate the curvature at0 by fitting the curvature at three
dratic terms. In practice, our numerical findings do show thaknown values ofe with basis functiong1, €, €. In Fig.

the values ofb, and b; are on the order of 18 or lower.  4(b) we plot curvature profiles a=0.20, 0.15, 0.10, and 0.
Therefore, curvature tensors follow immediately from theThe e— 0 profile is extrapolated from other three profiles
identificationC,,=2 X by, C,,=2X bg, andC,,=bs. The total  using the fitting theme discussed above. The solid line is the
curvatureC is defined as the trace of the curvature tensortheory curve of exact solution. As we can see from this
C=C,,+C,,. Figure 4a) gives a typical plot of the total graph, as decreases, the curvature profile becomes closer to
curvature versus azimuthal angle od-aone surface at three the theory curve, which is based on the assumption ¢hat
different distances from the tip. Curvature is measured ir=0 andh=0. Our e=0 profile agrees well with the theory
units of 1/ and taken to be negative in the convex region,curve in the central peak region. However, a striking differ-
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normal force pressure
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ence still exists in the range between the take-off positionghe angular separation of the take-off positions is about
and negative maxima. This discrepancy can be explained b%.21 rad=127°. To verify that the sharp peaks in the normal
the effect of nonzero thickness. For a real shket0Q, from  force pressure have the proper strength, we calculate the ratio

Eq. (5), we observe thaiﬁ tends to avoid jump at take-off Of the normal force from thé-function term to that from the
positions in the noncontact region where external pressuré-independent term. The ratio is found to be 0.70 from our
P=0; Otherwise, there would be a Singu|arity in the Strains_data, Compared well with the theoretical prediction 0.69 ob-
Therefore the observed curvature profile has to be roundei@ined in Sec. II.

rather than having an abrupt kink in S|0pe, which requires Our measurements in Sec. Il B and this section confirm
that the curvature profile be curved up as the sheet leaves tfigat our simulation accurately represents an elastic sheet as
container, just like what is displayed in the plot. Besides, thedesired. We now report the observed behavior of the core
same reason can explain the slight difference near take-offgion.

points in the curvature profiles at the three distances in Fig.

4(a). For smallerr, the curvature may be more influenced by D. Scaling of the core size

a nonzero thickness effect, so the profiler at30a is more ) ) _ o
rounded than the profile a=50a. In addition, we note that 10 Study the scaling law of the core region size, it is

the theory curve based on the model proposed by Chaieatural to start estimating the core size by finding the radius
et al. [8] does not match our data. of curvature of crescents. From azimuthal profiles of curva-

From the curvature file, we can measure the openiné“re at different distances, we find the locations of the tri-

angle of ad cone. The opening angle is defined as the angu;_mgles _vvith maximal negative curvature on both sides at each
lar distance between the two “take-off points” where thef'xed distance. The centers o_f these t_rlang_les are projected
sheet loses contact with the container. For asymptoticallNt© thex-y plane. The best fitted straight lines to the pro-
thin sheets with small deformation, this angle is predicted td€Ction points on two sides serve as the asymptotic lines of a
be 138° from the exact solution, as illustrated by the solidYPerbola, and the central forcing point is taken as the mid-
line of Fig. 4b). As e decreases to zero, the opening anglepf)'”t of the_same hy_perbola. This process is |IIu_strated in
measured from curvature profiles tends to converge to thafid- Ib)- Re is the radius of curvature at the midpoint of the
indicated by the solid line. We expect agreement with the!tted hyperbola shape. Figure 6 shows the dependenie of
prediction when the elastic thicknebsvanishes. This value Measured in this way dmandR when deformatior is fixed

was approximately confirmed by experiments, which yieldeg®t 0-10 and 0.15. We can observe power-law dependence
130°[6]. from these plots. The power-law fits give 0.334+0.022

and 0.380+0.014 for thickness dependence and give
0.574+0.021 and 0.597+0.032 for radius dependence. These
values roughly agree with the 1/3 and 2/3 exponents pro-
The azimuthal profile of the normal force pressure fromposed in Ref[5].

the container is displayed in Fig. 5. It is evident that we do As pointed out above, however, the lattice model can only
observe sharp peaks at the take-off positions, which confirmaccurately simulate an elastic sheet where the radius of cur-
the &-function term in the normal force pressure proposed invature, 1C, is locally much greater than the lattice spacing.
[12]. The pressure drops quickly to zero as one enters th@/e expect this condition not to be well satisfied in the core
buckled region where the sheet bends away from containeregion, where a singularity happens. Indeed, our data indi-

C. Normal force
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FIG. 6. The plots ofa) R. versush and(b) R. versusR at e=0.10 ande=0.15.R is fixed for plots in(a); h is fixed for plots in(b). The
straight lines are power-law fits. The fitted values of powdgjrare 0.334+0.022 foe=0.10 and 0.380+0.014 far=0.15. The fitted values
of power in(b) are 0.574+0.021 foe=0.10 and 0.597+0.032 far=0.15. The error bars in the graph come from the numerical hysteresis
effect when the thickness of the sheet or radius of the container is increased and decreased through the same value during the energy
minimization process.

cate thaiCa can be as big as 0.5 in this region even for small h?
€. Thus we have no hope of maintaining complete accuracy F~ ﬁ[‘ pinh-qIinR+(p+0q)inR,+D], (15
in this region. In addition, we find that the curvature data do
not exhibit the kind of shape as shown in Fig. 4 at smallwhereB andD only depend ore, which we now fix at 0.10.
distances. Therefore, in the above procedure of measRing Fixing e is realized through a process of several minimiza-
geometrically, we have to use curvature profiles at big distions. We slowly adjust the pushing force until the desieed
tances, which makes it not so accurate to deterrRinia this  value is reached. In every step of the process, the previously
way sinceR; is supposed to be determined from the infor- obtained minimized configuration is used as the input for the
mation in the neighborhood of the tip. next minimization procedure.

Our second approach of looking for the scaling relations To find the relations between exponents, we firsthfixy
is to use the force equatidid3). In our simulation, we keep fixing the bending coefficiend defined in Sec. Il A and
the spring constank fixed (k=1), which is equivalent to measure forc& on the minimized shapes for different values
fixing the two-dimensional Young's moduly¥ h) since we  of R. Figure 7a) gives a semilogarithmic plot ¥R versusR
have Yh=2ka/\3. Hence k= Yhh? From Eq.(13) we whenh is fixed at 0.102 and R, is fixed at 6@. The linear

have feature of the plot agrees with the prediction from ELp).
c)
b (
(a) (b) 5x10'8
0.1
0.07
45
0.1
4
0.06
D08 35
T
E o005 x 0.08 w3
0.07 25
0.04
2
0.06
1.5
0.03
20 30 40 50 60 (05 ]
R 0.1 0.2h 0.3 0405 30 40 50 60
R

FIG. 7. Force plots wher is fixed at 0.10.(a) FR versusR semilogarithmic plot. The data are fitted to B&®=-0.0342<In R
+0.1714. The parameters we use &rel, J=0.0013, andR,=60a. (b) F/h? versush semilogarithmic plot. The data are fitted to be
F/h?=-0.0494% In h+0.0108. The parameters we use krel, R=37a, and Ro=60a. (c) F versusR, semilogarithmic plot. The data are
fitted to beF=0.0046x In R,—-0.0147. The parameters we use krel, J=0.003, andR=25a. The relation between exponergsandq is
q=1.87%.
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We denote the slope and intercept of the best-fitted ling§;by TABLE |. Results of the testing force equation for different
and 1,, respectively. ThenS;=-0.0342+0.0011 andl,  values ofe.
=0.1714+0.0042. From Ed15) we find

Determinant B/p p
I;B=hF-pInh+(p+qg)nR,+D], (163
0.10 0.016+0.861 0.547+0.005 0.355+0.053
S B=h(-q). (16b) 0.15 -0.053+0.973 0.367+0.003 0.344+0.040

0.20 0.056+2.076 0.267+0.001 0.381+0.071

p— ! — H
Next, for the same value &f R=37a andR/=60a are fixed 0.95 0.163+2.720 0.203+0 001 0.410+0.073

while h is varied as the corresponding equilibrium fofeés
measured. Th&/h? versush semilogarithmic plot is shown
in Fig. 7(b). Similarly the slope of the best-fitted lin§,  independent oR,. If we make this assumption—that is, if
=-0.0494+0.0005 and intercepf=0.0108+0.0006, which we takex=0—then from the relation betwegnandg, we
according to Eq(15) are given by can obtainp=0.355+0.053. This is close to the correspond-
ing value from geometrical measurements.

Besidese=0.10, we perform the above tests of the force
equation for other values @f The results are summarized in
Table I. We notice that all the values pfare consistent with
1 scaling exponent of 1/3. In addition, by comparison of Egs.
SB==(-p). (17b) (13) and(15), it is easy to see tha& is inversely proportional

R to e. This relation can be readily confirmed from the data

. . hown in the table.
Notice that Eqs(163), (16b), (173, and (17b) constitute a S . . _
homogeneous system of four linear equations in four varix As mentioned in Sec. IIR; scaling is expected to break

bles{ D.B}. I der 1o h trivial soluti th for sufficiently largeR/h. However, in our simulations dis-
ablesip.q,b, by. In order 1o have nontrivial Solulions, e ¢,sseq apove, all the data are consistent with the assumption

determinant of its coefficient matrix must vanish. To Chethhat there exists a scaling law B which indicates that the

this condition, we write out the determinant of dimensionlesssymptotic regime of larg/h is not yet reached. The val-
matrix of coefficients explicitly: ues ofR/h in our simulations vary between 100 and 500. We
_ 2 conclude that the lower limit of this asymptotic regime
(InRp=Inh) IR, 1 =lyh should be at least above 500. It is unsettling that the

1
IzBZE[_qIn R+ (p+0q)in R, + D], (173

0 1 0 S/ asymptotic regime should require such laRyd, but similar
InR) (nR,-INR) 1 -I,R behavior occurs in related phenomena. For example, the
asymptotic scaling of the stretching ridge requires a ratio of
1 0 0 SR R/h of over a thousan{4].
=(InRh)S, +1,/h*-[R IN(hRYR,)1S;, — Ry, The reason for this unusually high lower limit may be the

following. The minor radius of the crescent is expected to be
which is calculated to be 0.016+0.861, indeed including 0.asymptotically much smaller tha®.. However, our observa-
In addition, we obtain the relations between these variablesion shows that this minor radius is comparable wihfor
g=(1.879+0.428p andB=(0.547+0.00%p. the range oR./h we are able to simulate. In this respect we
The third relationship we can extract from force equationsee directly that our system is not asymptotic. We have noted
(15) is F versusR,. To test this, we keep th® =0.154% and in Sec. Il that the system’s asymptotic behavior depends
R,=25a fixed while measuring pushing forces for different strongly on how this minor radius behaves. Thus one cannot
. The plot is shown in Fig. (£). On the one hand, the slope expect asymptotic scaling & without asymptotic behavior -
of the best-fitted line is 0.00461+0.00003 and the intercept i9f the minor radius. Since our simulations do not reach this
-0.0147+0.0001. On the other hand, we can calculate thBehavior, we should not be surprised titmay not show
slope and intercept of this graph using the relations betweefSymptotic scaling, either. To demonstrate that the minor ra-
p, g, D, andB obtained above. Specifically, from E@5) we ius is not asymptotic, we show its behavior in Fig. 8. Thls
have slopeS,=h?(p+q)/(BR;)=0.00510.0008 and inter- plot shows the intersection of the surface with a vertical
-y - plane passing transverse to the crescent. Thus the radius of
cept I3=hi/(BR)(-pInh;-qInR,;+D)=-0.0157£0.0026, - \\/atre of this curve at its peak is the minor radius. Both
both in good agreement with the direct-fitted values fromy,e horizontal and vertical scales are normalizedRgylt is
plot. These tests verify the self-consistency of our data an@yigent from the plot that this normalized width is on the
the validity of the form of the force equation, thus supportingorder of unity for all of the four thicknesses; this means that
the scaling behavior oR,. the minor radius of the crescent is comparable vRth In
The useful information we obtain from these tests con-addition, the feature that the minor radius of the crescent
cerning the scaling exponents is the relation betweemd  relative toR; is growing smaller as the thickness decreases
g. We cannot determine the value ofin Eq. (13) just from  provides evidence that the observed scaling behavig, of
these tests. However, geometrical measurements show thatir simulations is nonasymptotic.
R; varies very little withR,,. Indeed, we find that the standard
deviation of values ofR; at differentR, is only about a
couple percents of the mean valueRyf It seems this obser- In this paper we have explored the properties of the coni-
vation serves as a good footing for us to believe fRats  cal singularity of a developable cone, especially the scaling

IV. DISCUSSION
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of the core region size. We have found two types of stressemking this assumption, we are led to a scaling law suggest-
in the outer region of a singld cone that scale differently ing R.~ h'®R?3, Although our numerical results are consis-
with the distance to the tip. One type of stress arises from théent with the scaling prediction of Ref5], we were unable
normal force balance of the sheet without the external loado justify the arguments leading to their prediction. The fac-
and scales as t7. The other type of stress Sca"ng ag 19 tors determining?c are necessarily subtle, since the domi-
needed to balance the external pushing force. However, it j8ant energyB, depends only logarithmically oR;. Until a
revealed that the contribution of both stresses to the stretcig/ear justification for this scaling can be found and validated,

ing energy is negligible compared with bending energy of théNe apparent scaling we observed must be viewed as provi-

outer region. S'Oga" Ki ims t lore th tics lead
We also examined the normal force pressure from the ur work It progress aims 1o explore e energerics ‘ead-

. . . s _ Ing to R. scaling in more details. Our preliminary findings
contame_r. The jump in the curvature_ derivatiér requires suggest new features that may help to resolve this issue.
a o-function pressure from the container edge at the take—off:irst, one may construct variants ofiacone that require no

points. We verified t_hat this singular pressure is present Wit'?orcing at the core. Our preliminary data show that these
the predicted magnitudel2]. As a consequence, a substan-yariants have qualitatively different scaling behavior than the
tial fraction of the container forces comes from this conventionald cones. Second, conventiordicones appear
o-function term. to obey an unanticipated constraint at the container edge. The
Our numerical tests of pushing force equation suggest themean curvature appears to vanish there for a wide range of
existence of scaling behavior dR. in the regime we d-cone shapes. We anticipate that the energy focusing in
studied—that is, wheR is comparable witlR,. We obtain a cones will prove to be rich and revealing.
simple proportionality factor between exponemtsand g.
SinceR. has a dependence dr—i.e., p is nonzero—it fol- ACKNOWLEDGMENTS
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