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We examine the crescent singularity of a developable cone in a setting similar to that studied by Cerdaet al.,
fNaturesLondond 401, 46 s1999dg. Stretching is localized in a core region near the pushing tip and bending
dominates the outer region. Two types of stresses in the outer region are identified and shown to scale
differently with the distance to the tip. Energies of thed cone are estimated and the conditions for the scaling
of core region sizeRc are discussed. Tests of the pushing force equation and direct geometrical measurements
provide numerical evidence that core size scales asRc,h1/3R2/3, whereh is the thickness of sheet andR is the
supporting container radius, in agreement with the proposition of Cerdaet al. We give arguments that this
observed scaling law should not represent the asymptotic behavior. Other properties are also studied and tested
numerically, consistent with our analysis.
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I. INTRODUCTION

As we crumple a piece of paper in our hands, two types of
singular structures appear in the crumpled paper: folding
ridges and pointlike vertices. Energies are condensed into a
network of such singularities. The properties of ridges have
been studied thoroughly. Scaling laws governing the energy
and size of the ridge have been obtained analytically and
tested numericallyf1–4g. Pointlike singularities are also
studied extensivelyf5–12g; however, current understanding
of their properties is not as complete as that of ridges.

In this paper, we consider a single conical vertex studied
by Cerdaet al. f5,6g. One experimental realization is to push
the center of a circular elastic sheet of radiusRp axially into
a cylindrical container of radiusR, as illustrated in Fig. 1.
This is the simplest volume-restricting deformation of the
sheet and causes the center of the sheet to move into the
container by a distanced. It is useful to express the deflec-
tion of the sheet bye;d/R. Due to the constraint of un-
stretchability, the sheet deforms into a nonaxisymmetric
conical surface which is only in partial contact with the edge
of the container. In the limit that the thicknessh of the sheet
goes to zero, since the bending moduluss,h3d vanishes
faster than the stretching moduluss,hd, there would be pure
bending over the sheet and Gaussian curvature would be zero
everywhere. Mathematically, such a conical surface is called
a perfectly developable conef13g sd coned. In this limit,
some models about the shape of thed-cone have been pro-
posedf6–8,12g. These models only give outer-region solu-
tions of d-cone shape, in the sense that they do not consider
the stretching energy that is inevitable on a real sheet with
finite thickness. For a real sheet, it must stretch near the tip,
because otherwise, the curvature at the tip would be diver-
gent, since curvature goes as 1/r, wherer is the distance to
the tip, thus causing divergent energy. Therefore, it is the
finite thickness that causes the sheet to stretch greatly in a
small region near the tip. This small region is called the core
region. It is where energetically expensive stretching is lo-
calized and its size is governed by the competition of the

bending and stretching energies of the whole cone. As a re-
sult of the stress focusing in the core region, crescentlike
shapes come out where bending stresses are big, as shown in
Fig. 2. In addition, as we will see later, finite thickness also
causes a small amount of strains in the outer region.

One problem of great interest is concerned with the size
of the core region, characterized by the radius of curvature of
the crescents. We want to know whether there is scaling be-
havior of the core size and to determine any scaling expo-
nents. Intuitively, we expect that this sizeRc should have a
dependence on thicknessh, sinceRc goes to zero ash goes to
zero. Cerdaet al. f5g propose thatRc scales asRc,h1/3R2/3.
This says that, besidesh, the supporting container radiusR
also determinesRc. This is surprising because stretching en-
ergies are supposed to be localized in the core region, so the
core should not be able to know about the length of outside
container radius. In this work we explore this problem as
well as other properties of ad cone. In Sec. II, we describe

FIG. 1. A d cone appears when we push the center of an origi-
nally flat sheet against the edge of a cylindrical container from
below with forceF. This is a typical simulatedd-cone shape, with
side length l =60a, container radiusR=38a, displacementd
=0.15R, and thicknessh=0.102a, wherea is the lattice spacing.
Two sets of coordinate systems are shown.
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the energies and forces that give rise to the crescent singu-
larity. We first study the elastic properties of a truncatedd
cone formed by cutting a cap region at the center of a regular
d cone and then investigate the energetic variations as we
join the cap region into the truncatedd cone. From them, we
discuss the conditions for the existence of scaling behavior
of Rc. Details of numerical models of simulating an elastic
sheet and producing desired shapes are presented in Sec. III.
After numerical results that agree with the predictedd-cone
properties are shown, we use two different methods to look
for scaling exponents ofRc. Finally, the limitations of and
implications from our findings and future work are discussed
in Sec. IV.

II. THEORIES

We begin by stating the connection between the deforma-
tion of the sheet and its elastic energy. In a thind cone the
dominant energy is due to the bending distortion in outer
region far from the crescent. We discuss the form of this
energy and the stresses associated with it. Next we outline
the energetic effects of the crescent region. Finally, we focus
on how each of these energies is influenced by a change in
the crescent radiusRc. We sketch how scaling properties of
the energy produce scaling behavior in the sheet.

We first specify two coordinate systems. We definex-y as
the horizontal plane of the supporting cylindrical container’s
edge, with the origin on the axis of cylinder andz axis point-
ing upwardssee Fig. 1d. We then define anx8-y8 plane as
parallel to thex-y plane but with origin at the tip of the sheet
and z8 axis pointing opposite toz axis. Thex8-y8 plane is
displaced from thex-y plane by a distanced. Next we define
sr ,ud as the polar coordinates in thex8-y8 plane. In the cy-
lindrical coordinateshruz8j, the d cone is described byz8
=rcsud, in the limit that thicknessh→0. We shall denote
this limiting surface as theasymptotic d cone.

In equilibrium, the sheet assumes a conformation that
minimizes the elastic energy. Thus, the actual core radius is

that which minimizes this energy. Two forms of energy must
be considered: bending energyB and stretching energyS.
The bending energy density is proportional to the square of
the total curvatureCsrd f14g. This Csrd, defined as the trace
of the curvature tensor, is sometimes called the mean curva-
ture f15g. The constant of proportionality is called the bend-
ing modulusk. Thus,

B =
1

2
kE dACsrd2, s1d

whereedA denotes the integral over the surface. In general
there is a second form of bending energy, proportional to the
average Gaussian curvature. We show later in this section
that this Gaussian curvature energy is unimportant for the
present system.

The stretching energy density is proportional to the square
of the strain tensorg. For an isotropic material, there are two
forms of stretching energy with constants of proportionality
Yh andY1h f16g:

S=
1

2
E dAfYhsTrgd2 + Y1hsDetgdg, s2d

whereY is Young’s modulus andY1 is a convenient combi-
nation of Y and dimensionless Poisson’s ration. They are
related to bending modulus throughk=Yh3/12s1−n2d.

The actual strain and curvature fields are those which
minimize theB+S. The variational minimization amounts to
a statement that the normal forces on each element must
balance. This statement is known as the “force von Kármán
equation”

]a]bMab = sabCab + P, s3d

where Mab are torques per unit length,sab are in-plane
stresses, andP is external force per unit area of the sheet.

When we push a circular sheet of radiusRp into a con-
tainer to form ad cone, strain and curvature distortions are
created and elastic energy is stored. This energy arises from
several effects. It is convenient to discuss it by creating the
final surface in two stages. In the first stage, we assume a
value for Rc and cut a circular hole of that radius in the
center of the sheet. We then force this perforated sheet into
the container by exerting tension on the inner edge of the
hole. In the unstretchable limith!R, this shape becomes a
truncatedd cone, which serves as the outer region of a regu-
lar d cone. In this region, the curvature at every point van-
ishes in the radial direction. The total curvatureC has the
form C=fsud / r. Its bending energyB0 is thus given by

B0 =
1

2
kE

Rc

Rp

rdr/r2E duf2sud ~ k lnsR/Rcd. s4d

In the limit h!Rc!Rp, this B0 dominates the energy, as we
justify below. Then the functionf takes the form that mini-
mizes B0 subject to the constraints on thed cone. In this
geometry, the force von Kármán equation simplifies greatly,
and the form offsud as well as the associated stresses can be
found explicitly f6,12g.

FIG. 2. Sketch of the core region of ad cone. The crescent area
is shown in white. Directors are shown as black lines. Many direc-
tors converge toward the two tips of the crescent. The dashed circle
tangent to the crescent at its center defines the radiusRc.
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We first determine the transverse stresssuu using Eq.s3d.
The nonzero components of torque tensorM follow from the
constitutive law implicit in the energy equationsf14g: Mrr
=knCuu=knfsud / r andMuu=kCuu=kfsud / r. The force von
Kármán equation then reduces to]r

2Mrr +]u
2Muu / r2=suuCuu

+P, from which we obtain

suu =
k

r2S2n +
f̈sud
fsud

D −
Pr

fsud
, s5d

where the overdots denoteu derivatives. In the same region
where onlyCuu is nonzero, there is no pressure from external
force acting on the sheet—i.e.,P=0. Therefore, according to
Eq. s5d, the stresssuu goes ask / r2. These stresses arise from
the requirement that the normal force due to changing
torques be balanced by the normal force due to in-plane ten-
sion of the sheet. We call them type-I stresses and denote
them by the symbolss1d.

On the other hand, we consider the force balance of a
region that encloses the area between the inner radiusRc and
outer radiusr, wherer can take values betweenRc and R.
The tension exerted on the inner edge of this region is
equivalent to the central pushing force of a regulard cone.
This force must be balanced by the force due to radial in-
plane stresssrr on the outer perimeter of the region. Letb be
the angle between a radial line or generator of thed cone and
the horizontal. Since tanb=csud, we have sinb
=csud /Î1+c2sud. The balance of vertical forces yields

E srr r sinbdu = F, s6d

which holds for every value ofr from Rc to R. It is easy to
see that type-I stresses alone cannot satisfy this equation;
since type-I stresses go as 1/r2, they would give a 1/r pref-
actor on the left side of equation, while the right side of the
equation is independent ofr. Therefore, the integral from
type-I stresses must vanish and there must exist some addi-
tional stresses in the outer region that scale as 1/r to satisfy
Eq. s6d. We call these stresses type-II stresses and denote
them by ss2d. They persist up to the supporting container
edge, where normal force from the container counteracts the
external pushing force. We can writess2dr =Fesud, where
esud is a function only ofu and satisfieseesudsinbdu=1. It
is obvious thatesud is of order unity.

To estimate the magnitude of type-II stresses, we notice
that F=]E/]d=s]E/]ed /R<k /R. Thusss2d<F / r <k / srRd.
The type-II stresses are comparable with type-I stresses only
near the container edge since the ratioss1d /ss2d< r /R for
Rc, r ,R. It is noted that they are both due to nonzero thick-
nesses. Since in-plane stress tensors are related to strain ten-
sors throughf16g sab=fYh/ s1−n2dgsgab+nearebtgrtd, we
have strainsg<s / sYhd. The stretching energy of a truncated
d cone is then

S0 < kh−2E fsss1d + ss2dd/sYhdg2rdrdu < kh2/Rc
2. s7d

We now examine the profile of the external force along
the container edge. Here the external normal force pressureP
of Eq. s3d is nonvanishing. This normal force causes a small
transverse deflection of the sheet and hence induces both
curvature and strain near the edge. Noticing that the curva-
ture induced is in the radial direction and has opposite sign
with Cuu, we expect the mean curvature to be reduced near
the edge. Due to the translational symmetry along the region
of the surface in contact with the cylindrical container, the
normal force pressure is found to be independent of the azi-
muthal angleu. However, besides thisu-independent term,
Cerda and Mahadevanf12g show that ad-function term ofu
emerges in the normal force pressure expression in order to
make the torque balance, and this singularity happens at the
take-off angular positions, where the sheet begins to bend
away from the container. Since stresses and curvatures
should avoid singular behavior for the sake of energy, ac-
cording to Eq.s5d, there must exist ad-function term inf̈sud
to cancel that from normal force pressureP. Integrating over
u, we conclude thatḟsud should have a jump at the take-off
positions. This result is consistent with the geometrical re-
quirement. More quantitatively, following Ref.f12g, we find
that the ratio of the normal force contributed by the
d-function term to that contributed by theu-independent
term is tanuc/ f2sp−ucdg, whereuc is the half aperture angle
of the noncontact region. For small deflections, takinguc
<1.21 radf6g, we obtain the value of this ratio, 0.69. We
will numerically verify this ratio later.

Having discussed stresses and forces, we now consider in
detail the bending energyB0. The bending energy comes
from both the total curvature and Gaussian curvature. Since
the truncatedd cone has no Gaussian curvature, we only
need to take account of the total curvature contribution. The
reduced curvaturefsud is related to the reduced height
csud;z8 /r defined in the beginning of this section:fsud
=csud+c̈sud−csudċ2sud / f1+c2sudg. For small to moderate

deformations of the sheetse&0.4d, C<sc+c̈d / r .e / r.
Throughout the paper we shall focus on this moderate range
of e. The bending energyB0 has the form

B0 =
k

2
E C2dA< G1ke2 lnsRp/Rcd, s8d

where G1 is a geometrical factor. Comparing this withS0
from Eq.s7d, we see that bending dominates the outer region.

Although Gaussian curvature is zero everywhere in a
truncatedd cone, it is certainly not the case for a regulard
cone. The Gaussian curvature contribution to the bending
energy isBG=skG/2deKdA, wherekG is the Gaussian cur-
vature coefficient,K is the Gaussian curvature, andA is the
area. According to the Gauss-Bonnet theorem, the integral of
Gaussian curvature over a regionM of a surface is related
f13g to the integral of the geodesic curvaturekg over the
boundary of that region througheMKdA=2p−e]Mkgds.
ChoosingM to be the whole sheet without perforation, we
get BG=skG/2ds2p−ekgdsd. If the sheet were a perfectly
developable conical surface, the geodesic curvature at the
perimeter would be the same as that of a regular cone of the
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same size:kg=1/Rp, where Rp is the perimeter-to-tip dis-
tance. However, due to stretching of the real sheet and push-
ing of the container edge, the shape is not perfectly develop-
able, so there are variations in the perimeter-to-tip distances
along the boundary which makekg deviate from 1/Rp. Since
stretching is small compared with bending and the sheet is
nearly developable over most of the surface, this deviation is
small compared with 1/Rp, and it should depend on the
thicknessh. We suppose thatkg is a regular function ofh and
may be expressed askg<s1/Rpdf1+sh/RpdQsu ,edg, where
Q is a dimensionless function ofu and e. Substituting this
into the equation for the bending energy, we obtainBG
=−skG/2dsh/RpdeQsu ,eddu. Compared with Eq.s8d, this
energy is only a small fractionsh/Rpd / lnsRp/Rcd of the bend-
ing energy contributed by the total curvature.

The truncatedd cone discussed above has no crescent
singularity. This singularity arises from the further con-
straints of filling in the hole in the truncated cone. The flat
disk of radiusRc that was removed must be distorted in order
to join onto the truncated cone. This distorted cap exerts
forces on the truncatedd cone and distorts it in turn. All of
these distortions add elastic energy to the energyB0+S0 of
the initial truncatedd cone. One obvious addition is the
bending energyBG due to Gaussian curvature discussed
above. Another simple consequence of adding the core re-
gion is to alter the slope of the outer region generator frome
to a higher valuee8 as shown in Fig. 3sad. To relatee8 to e,
we imagine a cross section of thed cone extending from the
container edge to the tip and back down to the edgefsee Fig.
3sadg. In the truncatedd cone, the generators have the same
slope e as the straight line from the container edge to the
vertex, as shown by the solid lines in Fig. 3sad. Now, for the
real sheet, the cap is curved, with a curvature radius of order
Rc, but still, its uppermost point remains at heightd. This
rounding at the top necessarily increases the slope of the
outer cone generator, as illustrated by the dashed lines in the
same figure. When deformation is small,e8<d/ sR−Rc/2d
<ef1+Rc/ s2Rdg. The altered bending energy is given by Eq.

s8d with e replaced bye8: B08<G1ke2s1+Rc/RdlnsRp/Rcd.
This increases theB0 energy by a factors1+Rc/Rd. This
addition to the energy favors smallRc.

Besides these variations, there are other forms of added
energy. We denote them asDE. It consists of stretching en-
ergy DE0 added to the original region plus the energyEc of
the cap or core region. The added energyDE is expected to
be much smaller than the dominant energyB0 discussed
above. Nevertheless,DE is all important in determining the
core radiusRc.

Further distortions increase the energy of the outer region.
The crescent singularity increases the curvature near the tips
of the crescent. As shown in Fig. 2, the generators, initially
distributed smoothly around the inner hole, are now concen-
trated at the tips of the crescent, increasing the curvature
there. The generators splay outward from these tips. Obser-
vation suggests that a finite fraction of the generators are
pushed to the tips. These generators appear to splay outward
less rapidly when the sizeR is increased. These observations
suggest thatsad the crescent increases the exterior curvature
energy andsbd this energy decreases as the sizeR→` for a
given Rc. This energy penalty favors smallRc/R. We do not
have a more specific estimate for this energy at present.

We now consider the energyEc of the cap or core region
itself. In order to bridge the truncated cone, the average cur-
vatureC must be of ordere /Rc. If the curvatures are uni-
form, the associated bending energy is of orderkedAC2

.ke2. However, such uniform curvatures are not optimal.
The smoothly curved cap region has typical Gaussian curva-
tures of ordere2/Rc

2, consisting of a negative part in the
buckled region and a comparable positive part elsewhere.
The presence of Gaussian curvature induces strain of order
e2 and a stretching energy of orderkh−2e4Rc

2. The system
may alleviate this large stress energy by concentrating the
curvature, as in the simple stretching ridgef3g. The observed
crescent singularity is presumably the result of this concen-
trated curvature. The length of this crescent is of orderRc; its
width w is evidently that which minimizesEc. If w is a fixed
fraction ofRc, the above estimates show thatEc grows asRc

2.
To improve this energy,w/Rc must go to zero asRc grows.
The total curvature is then of order 1/w, and the bending
energy of the core goes askwRc/w2,Rc/w. This energy
must grow indefinitely asRc→`. Evidently, the core energy
favors smallRc.

With these energies in mind, we now investigate howRc
is determined. It is clear thatRc is controlled by the compe-
tition of energies. The total energy isE=S0+B08+BG+DE.
Our purpose is to find an optimalRc that minimizes the total
energy. First, taking the derivative ofB08 with respect toRc,
we have]B08 /]Rc=G1ke2h−1/Rc+flnsRp/Rcd−1g /Rj. In the
regime of interest,R is comparable withRp, andRc!R, so
the first term dominates the second term:]B08 /]Rc
<−G1ke2/Rc. This implies thatB0 favors largeRc. Next, we
notice that since]BG/]Rc and]S0/]Rc are much smaller than
]B08 /]Rc in this regime, the competition happens mainly be-
tween the outer bending energyB08 and the added energyDE.
Though we know little about the form of the added energy
DE, the above observations suggest thatsad it favors small
Rc, sbd it decreases asR increases, andscd it involves stretch-

FIG. 3. sad Sketch of a cross section of thed cone. The solid
hypotenuse is for thed cone whenh→0 and has slopee; the dashed
hypotenuse is for a real sheetshÞ0d and has slopee8. sbd Sketch of
fitting a hyperbola to findRc from geometry.
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ing, and thus increases with decreasing thicknessh. To illus-
trate the possible effect of this energy, we posit thatDE is
homogeneous inRc, R, andh:

DE = kgsedRc
sR−th−s+t, s9d

where gsed is an unknown function ofe and s and t are
unknown positive exponents. Theh power law is determined
from s and t by dimensional consistency. The energy mini-
mization with respect to the variational parameterRc then
implies

0 = Rc
]E

]Rc
= − G1ke2 + sDE. s10d

Using the assumed power-law form ofDE, we infer

Rc , Rt/sh1−t/s. s11d

Thus the assumption of Eq.s9d implies thatRc should in-
crease as a power ofR. SinceRc cannot exceedR, the power
must be smaller than unity, so thatt must be smaller thans.

Though this assumed form forDE gives a pleasing result,
we warn that it cannot be correct in the limit of largeR/h. If
it were correct, it would imply thatRc/h goes to infinity with
R/h. This implies that the core energyEc must go to infinity
relative toke2, as shown above. The increase ofEc occurs
irrespective ofR. ThusEc must grow to dominate the total
energy. Such a largeEc is not compatible with a minimum of
total energy. It must be balanced by some other energy fa-
voring largeRc. No such energy is apparent. ThusRc cannot
grow indefinitely. Conversely, any observed power-law
growth of Rc must cease for sufficiently largeR/h. In the
numerical section, we will give an empirical discussion of
the range ofR/h in which the scaling ofRc holds.

These conclusions contrast with the scaling argument pro-
posed in the initial studies of thed cone f5,12g. Thus it is
important to revisit this scaling argument and show how the
contradiction with our result arises. The authors attribute the
scaling to an energy balance between bending and stretching
in the core region. To estimate the stretching energy, they
consider a director traversing the sheet from one edge,
through the core and on to the opposite edge, such as the
dashed line in Fig. 3sad. They note that increasedRc in-
creases the length of this chordsrelative to the solid lined by
a fraction of ordersRc/Rd2. If this strain is presumed uni-
form, the associated stretching energy in the core is of order
kh−2Rc

2sRc/Rd4. They balance this energy against the bending
energy in the core, presumed to be of orderke2. This balance
yields Rc,R2/3h1/3.

This argument seems questionable, since it ignores ener-
gies much larger than the ones it includes. Its assumption of
uniform strain leads to a stretching energy of uniform density
outside as well as within the core. The argument includes
that part of this energy lying within the core while ignoring
the much larger part outside the core. If one tries to repair the
estimate by supposing the excess length resides only in the
core, then the strain becomes independent ofR and theRc
must be independent ofR. In addition the argument ignores
the large stretching energy in the core arising from the nec-
essary Gaussian curvature within the core itself, as discussed

above. Likewise, it takes no account of the strong difference
between the two principal curvatures in the crescent.

Our analysis of the energy given above allows us to infer
the scaling ofRc based on measurements of the central push-
ing force F. The inference is valid as long as the dominant
energy is theB0 energy above. The energy balance equation
s10d allows us to writeDE=G2ke2, whereG2 is a numerical
constant. Thus,

E < G1ke2 lnsRp/Rcd + G2ke2. s12d

The pushing force follows fromF=]E/]d=s]E/]ed /R. To
explore the scaling ofRc, we write Rc as Rc=hpRqRp

lAsed,
wherep, q, andl are scaling exponents to be determined and
Ased is a function only ofe. Dimensional consistency re-
quires thatp+q+l=1. Previous workf5,6g did not consider
the possibility thatRc has a dependence onRp. Here we
address it by introducingl. From Eq.s12d and the scaling
expression ofRc, the pushing force is calculated to be

F <
2G1ke

R
f− p ln h − q ln R+ s1 − ldln Rp + fsedg,

s13d

where fsed=−ln Ased+G2/G1−eȦsed /2Ased is a function
only of e. We will use this equation to test the scaling rela-
tions in the numerical section, which follows below.

III. NUMERICS AND FINDINGS

A. Numerical model

We model an elastic sheet by a triangular lattice of springs
of unstretched lengtha and spring constantk after Seung and
Nelsonf15g. Bending rigidity is introduced by assigning an
energy ofJs1−n̂1·n̂2d to every pair of adjacent triangles with
normalsn̂1 andn̂2. When strains are small compared to unity
and radii of curvature are large compared to the lattice spac-
ing a, this model is equivalent to an elastic sheet of thickness
h=aÎ8J/k made of an isotropic, homogeneous material with
bending modulusk=JÎ3/2, Young’s modulusY=2ka/hÎ3,
and Poisson’s ration=1/3. Thelattice spacinga is set to 1.
The shape of the sheet in our simulation is a regular hexagon
of side lengthRp. The typical value ofRp is 60a.

To obtain a singled-cone shape, we need to simulate the
constraining container edge and pushing force. As shown in
Fig. 1, the edge lies in thex-y plane and is described by the
equationx2+y2=R2. Pushing in the center of the sheet is
accomplished by introducing a repulsive potential of the
form Uforcesz1d=−Fz1, where z1 is the z coordinate of the
lattice point in the center andF is the magnitude of the
pushing force. This force is applied in the positivez direc-
tion. The constraining edge is implemented by a potential of
the form Uedge=oCpHszid / hfsÎxi

2+yi
2−Rd2+zi

2g4+j8j, where
j, Cp are constants and the summation is over all lattice
points with coordinatessxi ,yi ,zid. Hszd is the unit step func-
tion, which makes certain that this potential only acts on the
lattice points that have already moved into the container
sthose withzi .0d. The force associated with it decays rap-
idly once the lattice points go away from the edge. The con-
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jugate gradient algorithmf17g is used to minimize the total
elastic and potential energies of the system as a function of
the coordinates of all lattice points. Figure 1 shows one such
minimized configuration of the lattice grid. The simulated
sheet is indeed only in partial contact with the container
edge. In the rest of this section, we shall first compare our
results to thed-cone predictions of previous work. The good
agreement indicates that our numerical realization is reliable.
Next we shall investigate the scaling behavior ofRc.

B. Curvature profile

We first test our simulation by measuring the curvature
profile of the sheet and comparing it to the prediction under
certain limiting situations. We determine the curvatures ap-
proximately from each triangle in the sheet. For this mea-
surement, we take the curvature tensor to be constant across
each triangle. We calculate it using the relative heights of the
six vertices of the three triangles that share sides with the
given trianglef18g. The six relative heightswi normal to the
triangle surface are fit to a function of the form

wi = b1 + b2ui + b3vi + b4ui
2 + b5uivi + b6vi

2, i = 1, . . . ,6,

s14d

where hui ,vi ,wij are coordinates of the vertices in a local
coordinate system that has thew axis perpendicular to the
surface of the given triangle. This choice of local coordinate
system ensures thatb2 andb3 are negligible so that curvature
tensors can be determined only from the coefficients of qua-
dratic terms. In practice, our numerical findings do show that
the values ofb2 and b3 are on the order of 10−2 or lower.
Therefore, curvature tensors follow immediately from the
identificationCuu=23b4, Cvv=23b6, andCuv=b5. The total
curvatureC is defined as the trace of the curvature tensor:
C=Cuu+Cvv. Figure 4sad gives a typical plot of the total
curvature versus azimuthal angle on ad-cone surface at three
different distances from the tip. Curvature is measured in
units of 1/r and taken to be negative in the convex region,

where the sheet touches the supporting container. The three
curves mostly collapse into one single curve. This roughly
verifies that the curvature goes as 1/r. However, nearu=0,
the normalized curvature becomes systematically smaller for
smallerr. We attribute this departure to the influence of the
stretched crescent region.

The shapes of the curves are in qualitative agreement with
our analysis below. The surface is in contact with the con-
tainer for anglesu larger than someuc in magnitude. For
uuu.uc, the normalized curvature at allr shown is constant
and its value is that of a simple cone of the samee. As uuu
becomes less than the “take-off” angleuc, the surface curves
inwardly away from the container and the total curvature
begins to increase in negative direction. The crescent singu-
larity is most likely to live near the region where total cur-
vature reaches its negative maximum. Asuuu decreases fur-
ther, the curvature goes to zero, changes signs, and reaches a
central positive maximum atu=0, which corresponds to
where the sheet is maximally deflected.

As thicknessh and deformatione go to zero, Cerda and
Mahadevan obtained the exact solution of curvature profile
f6,12g. Although it is impossible for us to get theh→0 pro-
file, we want to compare our data with their prediction in the
limit that e=0. To do so, recall that the total curvature, as
mentioned in Sec. I is related to the shape throughC

=hcsud+c̈sud−csudċ2sud / f1+c2sudgj / r. Sincecsud~e, we
have Cr /e=a0+a1e2+a2e4+Ose6d, where a0, a1, and a2

could depend onu. Hence, from this equation, we can ex-
trapolate the curvature ate=0 by fitting the curvature at three
known values ofe with basis functionsh1, e2, e4j. In Fig.
4sbd we plot curvature profiles ate=0.20, 0.15, 0.10, and 0.
The e→0 profile is extrapolated from other three profiles
using the fitting theme discussed above. The solid line is the
theory curve of exact solution. As we can see from this
graph, ase decreases, the curvature profile becomes closer to
the theory curve, which is based on the assumption thate
=0 andh=0. Our e=0 profile agrees well with the theory
curve in the central peak region. However, a striking differ-

FIG. 4. sad Azimuthal profile of normalized
total curvature on ad cone at three fixed dis-
tances from the tip. Curvature is positive for the
concave region, negative for the convex region.
Curvature is normalized by 1/r, where r is the
fixed distance from the tip. This plot is for the
d-cone shape shown in Fig. 1 at distances 30a
scircled, 40a splusd, and 50a ssquared from the tip.
The container touches thed-cone surface atr
=RÎ1+e2<38.4a. sbd Normalized curvature pro-
files for four different values ofe at fixed thick-
nessh=0.102a. Curvature is normalized bye / r.
The profile ate→0 is obtained by extrapolating
from profiles ate=0.10, 0.15, and 0.20. The solid
line is the exact solution as bothh→0 and e
→0 f6,12g.
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ence still exists in the range between the take-off positions
and negative maxima. This discrepancy can be explained by
the effect of nonzero thickness. For a real sheet,hÞ0, from
Eq. s5d, we observe thatḟ tends to avoid jump at take-off
positions in the noncontact region where external pressure
P=0; otherwise, there would be a singularity in the strains.
Therefore the observed curvature profile has to be rounded
rather than having an abrupt kink in slope, which requires
that the curvature profile be curved up as the sheet leaves the
container, just like what is displayed in the plot. Besides, the
same reason can explain the slight difference near take-off
points in the curvature profiles at the three distances in Fig.
4sad. For smallerr, the curvature may be more influenced by
a nonzero thickness effect, so the profile atr =30a is more
rounded than the profile atr =50a. In addition, we note that
the theory curve based on the model proposed by Chaieb
et al. f8g does not match our data.

From the curvature file, we can measure the opening
angle of ad cone. The opening angle is defined as the angu-
lar distance between the two “take-off points” where the
sheet loses contact with the container. For asymptotically
thin sheets with small deformation, this angle is predicted to
be 138° from the exact solution, as illustrated by the solid
line of Fig. 4sbd. As e decreases to zero, the opening angle
measured from curvature profiles tends to converge to that
indicated by the solid line. We expect agreement with the
prediction when the elastic thicknessh vanishes. This value
was approximately confirmed by experiments, which yielded
130° f6g.

C. Normal force

The azimuthal profile of the normal force pressure from
the container is displayed in Fig. 5. It is evident that we do
observe sharp peaks at the take-off positions, which confirm
thed-function term in the normal force pressure proposed in
f12g. The pressure drops quickly to zero as one enters the
buckled region where the sheet bends away from container.

The angular separation of the take-off positions is about
2.21 rad=127°. To verify that the sharp peaks in the normal
force pressure have the proper strength, we calculate the ratio
of the normal force from thed-function term to that from the
u-independent term. The ratio is found to be 0.70 from our
data, compared well with the theoretical prediction 0.69 ob-
tained in Sec. II.

Our measurements in Sec. III B and this section confirm
that our simulation accurately represents an elastic sheet as
desired. We now report the observed behavior of the core
region.

D. Scaling of the core size

To study the scaling law of the core region size, it is
natural to start estimating the core size by finding the radius
of curvature of crescents. From azimuthal profiles of curva-
ture at different distances, we find the locations of the tri-
angles with maximal negative curvature on both sides at each
fixed distance. The centers of these triangles are projected
onto thex-y plane. The best fitted straight lines to the pro-
jection points on two sides serve as the asymptotic lines of a
hyperbola, and the central forcing point is taken as the mid-
point of the same hyperbola. This process is illustrated in
Fig. 3sbd. Rc is the radius of curvature at the midpoint of the
fitted hyperbola shape. Figure 6 shows the dependence ofRc
measured in this way onh andR when deformatione is fixed
at 0.10 and 0.15. We can observe power-law dependence
from these plots. The power-law fits give 0.334±0.022
and 0.380±0.014 for thickness dependence and give
0.574±0.021 and 0.597±0.032 for radius dependence. These
values roughly agree with the 1/3 and 2/3 exponents pro-
posed in Ref.f5g.

As pointed out above, however, the lattice model can only
accurately simulate an elastic sheet where the radius of cur-
vature, 1/C, is locally much greater than the lattice spacing.
We expect this condition not to be well satisfied in the core
region, where a singularity happens. Indeed, our data indi-

FIG. 5. Azimuthal profile of the normal force
pressure. This is for the shape shown in Fig. 1.
Normal force pressure is measured in relative
units. The right peak is located at 1.12 rad; the
left peak is located at −1.09 rad.
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cate thatCa can be as big as 0.5 in this region even for small
e. Thus we have no hope of maintaining complete accuracy
in this region. In addition, we find that the curvature data do
not exhibit the kind of shape as shown in Fig. 4 at small
distances. Therefore, in the above procedure of measuringRc
geometrically, we have to use curvature profiles at big dis-
tances, which makes it not so accurate to determineRc in this
way sinceRc is supposed to be determined from the infor-
mation in the neighborhood of the tip.

Our second approach of looking for the scaling relations
is to use the force equations13d. In our simulation, we keep
the spring constantk fixed sk=1d, which is equivalent to
fixing the two-dimensional Young’s modulussYhd since we
have Yh=2ka/Î3. Hencek~Yh3~h2. From Eq. s13d we
have

F <
h2

BR
f− p ln h − q ln R+ sp + qdln Rp + Dg, s15d

whereB andD only depend one, which we now fix at 0.10.
Fixing e is realized through a process of several minimiza-
tions. We slowly adjust the pushing force until the desirede
value is reached. In every step of the process, the previously
obtained minimized configuration is used as the input for the
next minimization procedure.

To find the relations between exponents, we first fixh by
fixing the bending coefficientJ defined in Sec. III A and
measure forceF on the minimized shapes for different values
of R. Figure 7sad gives a semilogarithmic plot ofFR versusR
whenh is fixed at 0.102a andRp is fixed at 60a. The linear
feature of the plot agrees with the prediction from Eq.s15d.

FIG. 6. The plots ofsad Rc versush andsbd Rc versusR at e=0.10 ande=0.15.R is fixed for plots insad; h is fixed for plots insbd. The
straight lines are power-law fits. The fitted values of power insad are 0.334±0.022 fore=0.10 and 0.380±0.014 fore=0.15. The fitted values
of power insbd are 0.574±0.021 fore=0.10 and 0.597±0.032 fore=0.15. The error bars in the graph come from the numerical hysteresis
effect when the thickness of the sheet or radius of the container is increased and decreased through the same value during the energy
minimization process.

FIG. 7. Force plots whene is fixed at 0.10.sad FR versusR semilogarithmic plot. The data are fitted to beFR=−0.03423 ln R
+0.1714. The parameters we use arek=1, J=0.0013, andRp=60a. sbd F /h2 versush semilogarithmic plot. The data are fitted to be
F /h2=−0.04943 ln h+0.0108. The parameters we use arek=1, R=37a, andRp=60a. scd F versusRp semilogarithmic plot. The data are
fitted to beF=0.00463 ln Rp−0.0147. The parameters we use arek=1, J=0.003, andR=25a. The relation between exponentsp andq is
q=1.879p.
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We denote the slope and intercept of the best-fitted line byS1
and I1, respectively. ThenS1=−0.0342±0.0011 andI1
=0.1714±0.0042. From Eq.s15d we find

I1B = h2f− p ln h + sp + qdln Rp + Dg, s16ad

S1B = h2s− qd. s16bd

Next, for the same value ofe, R=37a andRp8=60a are fixed
while h is varied as the corresponding equilibrium forceF is
measured. TheF /h2 versush semilogarithmic plot is shown
in Fig. 7sbd. Similarly the slope of the best-fitted lineS2
=−0.0494±0.0005 and interceptI2=0.0108±0.0006, which
according to Eq.s15d are given by

I2B =
1

R
f− q ln R+ sp + qdln Rp8 + Dg, s17ad

S2B =
1

R
s− pd. s17bd

Notice that Eqs.s16ad, s16bd, s17ad, and s17bd constitute a
homogeneous system of four linear equations in four vari-
ableshp,q,D ,Bj. In order to have nontrivial solutions, the
determinant of its coefficient matrix must vanish. To check
this condition, we write out the determinant of dimensionless
matrix of coefficients explicitly:

*
sln Rp − ln hd ln Rp 1 − I1/h

2

0 1 0 S1/h
2

ln Rp8 sln Rp8 − ln Rd 1 − I2R

1 0 0 S2R
*

= sln R/h2dS1 + I1/h
2 − fR lnshRp8/RpdgS2 − RI2,

which is calculated to be 0.016±0.861, indeed including 0.
In addition, we obtain the relations between these variables:
q=s1.879±0.428dp andB=s0.547±0.005dp.

The third relationship we can extract from force equation
s15d is F versusRp. To test this, we keep theh1=0.1549a and
R1=25a fixed while measuring pushing forces for different
Rp. The plot is shown in Fig. 7scd. On the one hand, the slope
of the best-fitted line is 0.00461±0.00003 and the intercept is
−0.0147±0.0001. On the other hand, we can calculate the
slope and intercept of this graph using the relations between
p, q, D, andB obtained above. Specifically, from Eq.s15d we
have slopeS3=h1

2sp+qd / sBR1d=0.0051±0.0008 and inter-
cept I3=h1

2/ sBR1ds−p ln h1−q ln R1+Dd=−0.0157±0.0026,
both in good agreement with the direct-fitted values from
plot. These tests verify the self-consistency of our data and
the validity of the form of the force equation, thus supporting
the scaling behavior ofRc.

The useful information we obtain from these tests con-
cerning the scaling exponents is the relation betweenp and
q. We cannot determine the value ofl in Eq. s13d just from
these tests. However, geometrical measurements show that
Rc varies very little withRp. Indeed, we find that the standard
deviation of values ofRc at different Rp is only about a
couple percents of the mean value ofRc. It seems this obser-
vation serves as a good footing for us to believe thatRc is

independent ofRp. If we make this assumption—that is, if
we takel=0—then from the relation betweenp and q, we
can obtainp=0.355±0.053. This is close to the correspond-
ing value from geometrical measurements.

Besidese=0.10, we perform the above tests of the force
equation for other values ofe. The results are summarized in
Table I. We notice that all the values ofp are consistent with
scaling exponent of 1/3. In addition, by comparison of Eqs.
s13d ands15d, it is easy to see thatB is inversely proportional
to e. This relation can be readily confirmed from the data
shown in the table.

As mentioned in Sec. II,Rc scaling is expected to break
for sufficiently largeR/h. However, in our simulations dis-
cussed above, all the data are consistent with the assumption
that there exists a scaling law ofRc which indicates that the
asymptotic regime of largeR/h is not yet reached. The val-
ues ofR/h in our simulations vary between 100 and 500. We
conclude that the lower limit of this asymptotic regime
should be at least above 500. It is unsettling that the
asymptotic regime should require such largeR/h, but similar
behavior occurs in related phenomena. For example, the
asymptotic scaling of the stretching ridge requires a ratio of
R/h of over a thousandf4g.

The reason for this unusually high lower limit may be the
following. The minor radius of the crescent is expected to be
asymptotically much smaller thanRc. However, our observa-
tion shows that this minor radius is comparable withRc for
the range ofRc/h we are able to simulate. In this respect we
see directly that our system is not asymptotic. We have noted
in Sec. II that the system’s asymptotic behavior depends
strongly on how this minor radius behaves. Thus one cannot
expect asymptotic scaling ofRc without asymptotic behavior
of the minor radius. Since our simulations do not reach this
behavior, we should not be surprised thatRc may not show
asymptotic scaling, either. To demonstrate that the minor ra-
dius is not asymptotic, we show its behavior in Fig. 8. This
plot shows the intersection of the surface with a vertical
plane passing transverse to the crescent. Thus the radius of
curvature of this curve at its peak is the minor radius. Both
the horizontal and vertical scales are normalized byRc. It is
evident from the plot that this normalized width is on the
order of unity for all of the four thicknesses; this means that
the minor radius of the crescent is comparable withRc. In
addition, the feature that the minor radius of the crescent
relative toRc is growing smaller as the thickness decreases
provides evidence that the observed scaling behavior ofRc in
our simulations is nonasymptotic.

IV. DISCUSSION

In this paper we have explored the properties of the coni-
cal singularity of a developable cone, especially the scaling

TABLE I. Results of the testing force equation for different
values ofe.

e Determinant B/p p

0.10 0.016±0.861 0.547±0.005 0.355±0.053

0.15 −0.053±0.973 0.367±0.003 0.344±0.040

0.20 0.056±2.076 0.267±0.001 0.381±0.071

0.25 0.163±2.720 0.203±0.001 0.410±0.073
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of the core region size. We have found two types of stresses
in the outer region of a singled cone that scale differently
with the distance to the tip. One type of stress arises from the
normal force balance of the sheet without the external load
and scales as 1/r2. The other type of stress scaling as 1/r is
needed to balance the external pushing force. However, it is
revealed that the contribution of both stresses to the stretch-
ing energy is negligible compared with bending energy of the
outer region.

We also examined the normal force pressure from the
container. The jump in the curvature derivativeḟ / r requires
a d-function pressure from the container edge at the take-off
points. We verified that this singular pressure is present with
the predicted magnitudef12g. As a consequence, a substan-
tial fraction of the container forces comes from this
d-function term.

Our numerical tests of pushing force equation suggest the
existence of scaling behavior ofRc in the regime we
studied—that is, whenR is comparable withRp. We obtain a
simple proportionality factor between exponentsp and q.
SinceRc has a dependence onh—i.e., p is nonzero—it fol-
lows thatq is nonzero, which implies thatRc must have a
dependence onR. This is somewhat counterintuitive. More-
over, geometrical measurements of core size provide sugges-
tive numerical evidence thatRc is independent ofRp. By

taking this assumption, we are led to a scaling law suggest-
ing Rc,h1/3R2/3. Although our numerical results are consis-
tent with the scaling prediction of Ref.f5g, we were unable
to justify the arguments leading to their prediction. The fac-
tors determiningRc are necessarily subtle, since the domi-
nant energyB0 depends only logarithmically onRc. Until a
clear justification for this scaling can be found and validated,
the apparent scaling we observed must be viewed as provi-
sional.

Our work in progress aims to explore the energetics lead-
ing to Rc scaling in more details. Our preliminary findings
suggest new features that may help to resolve this issue.
First, one may construct variants of ad cone that require no
forcing at the core. Our preliminary data show that these
variants have qualitatively different scaling behavior than the
conventionald cones. Second, conventionald cones appear
to obey an unanticipated constraint at the container edge. The
mean curvature appears to vanish there for a wide range of
d-cone shapes. We anticipate that the energy focusing ind
cones will prove to be rich and revealing.
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